Aspiration Pneumonia And The Role Of The Speech-Language Pathologist: Using Evidence To Determine Risks Associated With Oral Feeding

SPEAKER:
James L. Coyle,
PhD, CCC-SLP, BRS-S
Dysphagia Practice: Aspiration Pneumonia and the Role of the Speech-Language Pathologist

March 6th, 2010
Pittsburgh, PA

James L. Coyle, Ph.D., CCC-SLP, BRS-S (jcoyle@pitt.edu)
Department of Communication Science and Disorders
University of Pittsburgh

Outline

• 8:00–8:30 Anatomy and Physiology of the Respiratory System R/T Dysphagia
• 8:30–9:30 Pneumonia Types; Differential Diagnosis of Aspiration Pneumonia
• 9:30–9:45 Break
• 9:45–11:15 Differential Diagnosis of AP (continued)
• 11:15–12:15 Lunch (on your own)
• 12:15–1:00 Non-Dysphagia Pneumonia Risk Factors: Attributing Risk With Logic
• 1:00–1:45 Pulmonary Function Tests and Treatments for Respiratory Diseases
• 1:45–2:00 Break
• 2:00–2:45 Dysphagia Interventions and Aspiration: Thick Liquids, Water Protocols, (Tubes), and Common Sense
• 2:45–3:45 Case Studies

Dysphagia is Not a Disease

Disease, Condition:
Neurologic
Traumatic
Neoplastic
Structural
Iatrogenic
“Deconditioning”
Pulmonary
Others

Dysphagia

Aging

Disease, Condition:
Pulmonary
Nutritional
Community-Acquired
Social
Psychological
Others
Medical SLP

- Role of Modern Medical SLP
 - What is the nature of the patient's dysphagia?
 - How likely is current disease related to dysphagia?
 - What is risk of future disease due to dysphagia?
 - Can that risk be lowered?
 - How?
 - These questions are far less commonly asked by referring physicians, of other professionals

Medical SLP

- Adverse outcomes in our patients
 - Pulmonary diseases
 - Malnutrition, dehydration
 - Blood glucose management
 - Airway obstruction
 - Social isolation, depression
 - All are costly (economic cost)
 - Most can cause premature death (human cost)

Essential Knowledge

- Anatomy, physiology respiratory system
- Pathophysiology of common conditions
- Natural history of common conditions
- Effects and side effects of common medications
- What do test results mean
 - Imaging, laboratory, bacteriology, PFT, etc.
- What is considered “normal” swallowing function?
Pre-test

- Where does diaphragm’s innervation originate?
- What cranial nerve supplies facial sensation?
- What about tongue sensation?
- All pneumonias are technically aspiration pneumonias. True or false?
- Feeding tubes prevent aspiration. True or false?
- Eliminating dysphagia is the best way to reduce aspiration pneumonia risk. True or False?

Aerodigestive tract anatomy

Digestive:
Digestive System

- Esophagus - Transports food to digestive system
- Stomach - Breaks down proteins
- Duodenum - Breaks down fats, carbohydrates
- Jejunum - Absorbs carbohydrates and proteins
- Ileum – Absorbs fats
- Colon: transport waste, absorb water
 - Cecum, ascending, transverse, sigmoid, rectum...

Digestive System

- Esophagus
 - Muscular tube
 - Sphincters
 - Pierces diaphragm
 - Bolus transit

Digestive System

- Esophagus
 - Muscular tube
 - Sphincters
 - Pierces diaphragm
 - Bolus transit
Digestive System

- Stomach
 - GE junction
 - Fundus, body, pylorus
 - Pyloric sphincter
 - Mucosa secretes:
 - HCl
 - Proteolytics
 - Hormones
 - Mucus

Digestive System

- Duodenum

Digestive System

- Jejunum
 - Villi absorb dissolved nutrients
 - Nutrients transported in blood to target organs
Digestive System

- Large intestine
 - Removes water from remaining waste
 - Eliminates waste

Respiratory System Functions

- Ventilation
 - Transfer of oxygen rich air into lungs
 - Transfer of oxygen depleted/waste air out of lungs
- Respiration
 - Transfer of oxygen to circulatory system, then to working organs
 - Removal of some metabolic waste from working organs, via circulatory system
Ventilation

Airways CONDUCT air to alveoli... NO GAS EXCHANGE

Respiratory Gross Anatomy

Parietal pleura
Visceral pleura

P=atm rib
Ventilation Principles

- Lungs (alveoli) have a tendency to collapse
 - Elastance (or surface tension)
- Chest wall has a tendency to expand
 - Elastance
- Chest wall is connected to lungs, which
 - Maintains lungs partially inflated at rest
 - Maintains chest wall partially collapsed at rest

Major Events in Ventilation

- Phrenic nerve activates diaphragm
- Diaphragm contracts, pulling on lung and pushing on viscera
- Alveolar inertia overcome, lung volume increases
- Intra-alveolar pressure decreases (Boyle's Law)
- Atmospheric air fills pressure void in lungs
- Alveolar volume decreases, pressure increases
- Compressed viscera, stretched alveoli, recoil
- Elasticity of viscera, alveoli are now unopposed
- Alveolar are "pushed" out to atmosphere
- Phrenic nerve impulses cease, diaphragm relaxes

Ventilation-Rest

- P_{n} = Patm
- P_{a} = Patm
- nb
- rb
- Lung
- Diaphragm
- Pleural linkage
Respiration

- Physiologic requirements
 - Eliminate accumulated waste
 - Acquire nutrients
 - Oxygen and Carbon Dioxide concentrations are balanced by the respiratory system

- Medullary, peripheral centers sensitive to pH changes
 - Rate, depth of ventilation quickly altered by response to pH

Circulation & Respiration

- Lungs
- External Respiration (Blood ↔ Atmosphere)
- Working Tissues & Organs
- Internal Respiration (Blood ↔ Organs)
External Respiration

Alveoli exchange with blood

Breathing and Swallowing

Respiration and Deglutition

- Upper aerodigestive tract is shared
- Ventilation stops with swallowing (apnea)
 - Larynx closes "bottom to top"

Charbonneau et al., 2005; Hiss et al., 2003; Perlman et al., 2005

Aspiration Pneumonia and the SLP
James L. Coyle, Ph.D., CCC-SLP, BRS-S
Normal Spirometry

- IRV: Inspiration (expansion)
- TV
- ERV: Expiration (collapse)
- RV

Respiration and Deglutition

- In Normals...
 - Exhale → Swallow → Exhale; Young and Old¹
 - Respiratory rate (young) is about 16/min.²
 - " " (elderly) " " 20/min.
 - Total Swallow Duration, Swallow Apnea Duration³
 - Increase with age
 - Decrease with lower lung volumes

Normal Respiratory Rate-swallow on expiration

Total Swallow Duration=1.5 – 2.5 seconds

- Respiratory Rate = 16/min
Exhalation begins Swallow begins Swallow ends, exhalation resumes

Respiration and Deglutition

- Subglottic pressure

Inhalation: pressure above atmospheric
Exhalation: pressure below atmospheric

Rest breathing

UES Post. Phar. wall

C7 C6 C5 Post. Phar. wall
Breathing and swallowing

- Abnormalities
 - Stroke: volumes, duration, airflow direction
 - Shorter cycle duration at rest*
 - Direction of airflow after swallow**
 - Normals: 96% expiration after swallow
 - Stroke: 60% expiration after swallow (p<.01)
 - Laryngectomy***
 - Evidence of maintained pattern in laryngectomy

*,**Leslie et al., 2002 a,b
***Charbonneau et al., 2005
Breathing and swallowing
- Abnormalities
 - Cheyne Stokes respiratory pattern
 - Periodic apnea

Breathing and swallowing
Abnormalities: Tachypnea

Swallow-apnea
1.5 – 2.5 seconds

Pneumonia and Respiratory Diseases
Aging and Disease

- 2005: 20 million chronic-disease deaths
 - Cardiovascular 30%
 - Cancer 13%
 - Chronic respiratory 7%
 - Diabetes mellitus 2%
- Devastating events and comorbidity
 - Stroke, neurodegenerative disease PLUS above

Pneumonia

- Most frequent infectious cause of death*
- 2nd most common nosocomial infection (UTI) in hospitals***
- 33%-48% of all Nursing Home Infections
- 63,000 deaths in 2003**
- 40% higher incidence in elderly
- Case fatality rate
 - 55% (elderly)

What is Pneumonia?

- Causes
 - Microbiological etiology
 - Pneumococcal, Legionnaire’s, RSV, bacterial
- Location (site)
 - Bronchoalveolar, lobular, lobar
- Type
 - Primary (inhale or aspirate pathogen)
 - Secondary (opportunistic pathogen infects damaged epithelium)
What is Pneumonia?

- Setting of onset
 - Community acquired pneumonia
 - Health care associated (nosocomial) pneumonia

- Predisposing factors
 - Ventilator associated pneumonia
 - Aspiration pneumonia

What is Pneumonia?

- An inflammation of pulmonary parenchyma (alveoli, airways, both)...
 - ...Caused by infectious pathogens

- Treatment:
 - Infection must be treated
 - Respiratory distress, failure must be treated

What is Pneumonia?

- Phase 1: Edema
 - Pathogen infiltrates, infects alveoli
 - Draws nourishment from alveolar epithelium
 - Damaging alveolar epithelium
 - Producing metabolic byproducts (toxins)
 - Irritants to alveoli
 - Inflammation

Illustration: Patrick J. Lynch

Illustration: Patrick J. Lynch

Aspiration Pneumonia and the SLP
James L. Coyle, Ph.D., CCC-SLP, BRS-S
What is Pneumonia?

- Phase 2: Red hepatization phase.
 - Alveoli become excessively permeable
 - Red blood cells “leak” from capillaries
 - Immunological response
 - Inflammation of the lung = Pneumonitis

What is Pneumonia?

- Alveoli fill with RBC, WBC, serum, infectious debris
- Respiratory surface area is reduced by infiltrate
 - Dyspnea, hypoxemia
- Epithelium thickens
 - Surfactant production is diminished
 - Reduces compliance of lung
 - Further source of dyspnea
- Can spread with cough

Infiltrates

Thickened epithelium
What is Pneumonia?

- Phase 3: Gray hepatization phase
 - RBC’s destroyed
 - Infection contained
 - Bacteria absent
 - Infiltrates diminish
- Phase 4: Resolution
 - Immunological “clean-up”
 - Epithelium “heals”, surfactant restored

Types of Pneumonia

- All Pneumonia
 - Bacterial, viral, Legionella, RSV, etc.
- CAP
- Nosocomial Pneumonia
- Aspiration Pneumonia
 - Typical
 - Atypical
- VAP
- Non-VAP

Types of Pneumonia

- Community Acquired Pneumonia (CAP)
 - Pneumonia not acquired in a health care facility
 - 4-5 million cases per year**
 - 600,000 hospitalizations, 45,000 deaths**
 - Incidence**
 - 12 per 1000 persons
 - 20 per 1000 elderly persons (60% greater)

*Niederman, 2002; **Mandell & Wunderink, 2007
C.A.P.

- Pathogens responsible
 - Typical: Streptococcus, Klebsiella pneumoniae
 - Atypical *: H. influenzae, RSV, Legionella, E. coli, Staph. aureus, others

*El-Soh, et al., 2000; CDC guidelines

Cost of CAP

- Human Costs of Community Acquired Pneumonia
- Pneumonia after stroke*
 - 26.3% mortality, vs. 4.4% in stroke w/o pneumonia
- Economic Costs of Community Acquired Pneumonia
- Cost of pneumonia: $8-10 billion (1998)** ***

*Katzan, et al., 2003; **Niederman, et al., 1998; Mandell & Wunderink, 2007

Types of Pneumonia

- Nosocomial Pneumonias: Ventilator Associated, Nursing Home Acquired Pneumonia
- Pathogens:
 - Pseudomonas aeruginosa, Proteus species, Staph. Aureus

MRSA, Pseudobacteria
Types of Pneumonia

- Ventilator Associated Pneumonia
 - Exposure to mechanical ventilation
 - Contaminated respiratory circuits
 - Contaminated suction, bronchoscopic equipment
 - Gastroesophageal reflux common in Ventilation
 - Early, late onset
 - Early: typically CAP pathogens
 - Late: MRSA, other drug-resistant pathogens

Aspiration Pneumonia (AP)

- Aspiration
 - Foreign matter enters the respiratory system
- Pneumonia
 - Infectious acute inflammation
 - Reaction to pathogen
- Aspiration Pneumonia
 - Pulmonary infection caused by aspiration of colonized matter

Aspiration Pneumonia

- Aspiration pneumonia
 - CAP
 - Nosocomial

 - AP can originate in the community or in a hospital/HCF
 - Has reached epidemic proportions in the US*

*Baine, Yu, & Summe, 2001
Aspiration Pneumonia

- Human Costs of Aspiration Pneumonia
- AP admissions highest case-fatality rate
 - 23.1% during hospitalization*
- Is fatal in 20%-50% of confirmed cases
- Annual mortality (1998 numbers)
 - >25,000 annual deaths due to AP
- Economic Costs of Aspiration Pneumonia
 - $1.5 billion

*Baine et al, 2001;

Importance:

- If we reduce the incidence of AP by a modest 20%
 - 5,000 saved lives each year
- If we reduce the admissions or length of stay for AP by a modest 20%
 - $300 million saved

Data extrapolated from Mandell & Wunderink, 2007; Baine et al, 2001

What is Dysphagia-Related Aspiration Pneumonia (DAP)?

- Patient with dysphagia
- ...and other risk factors favoring pneumonia
- ...aspirates colonized oral secretions
- ...causing infection of airways and/or alveoli

- Where do these pathogens come from?
Oral biofilm development

How Does DAP Develop?

- Host Risk Factors
 - Mental status, immunological health, oral condition, upper GI obstruction, etc.
- What was aspirated?
 - And what is its pathogen load?
- Iatrogenic Risk Factors (institutionalized)
 - Feeding tube, postoperative impairments, medications, etc.

Where Does DAP Develop?

- Site of occurrence:
 - Can occur in a health care facility (HCF)
 - Nosocomial Aspiration Pneumonia
 - Can occur outside of the HCF
 - Community Acquired Aspiration Pneumonia
Aspiration Pneumonitis

- Non-Infectious
 - Acute Lung Injury caused by aspiration of caustic or particulate matter
 - Inflammation of alveoli by effects of irritants
 - No infection (sterile/non-pathogenic material)
 - Inflammatory edema reduces surface area
- Gastric contents
 - Sterile, acidic, caustic
 - Damage to airways, alveoli

A new source of AP?

- Gastric contents are normally sterile
 - pH: 2-3* (nothing can survive)
- However....
 - When stomach is de-acidified, and patient exhibits GE reflux or emesis, aspirated, colonized gastric contents can produce pneumonia
- Increased use of acid suppressing drugs**
 - Raise gastric pH to 4.0 to 6.0*

A new source of AP?

- Laheij et al., 2004*
 - 365,000 patients
 - Users and non-users of acid suppression drugs
 - Some were prior users
 - 5,551 patients developed pneumonia
 - PPI users were twice as likely to develop pneumonia
 - OR = 1.94-2.28
 - H2 receptor agonist users
 - OR = 1.36-1.64
 - AND...Eurich, et al., 2010; Herzig, et al., 2009

Distinguishing AP, Aspiration Pneumonitis, Other Pneumonias

- The Medical Record contains important clues
 - HISTORY OF ONSET
 - The course and progression of the disease
 - Presence/absence of underlying source/cause of aspiration
 - Results of lab, radiographic tests
Differential Diagnosis

- Dysphagia-related Aspiration Pneumonia (DAP)
- Non-dysphagia-related Aspiration Pneumonia (NDAP)
- Other pneumonias

DAP
- Associated with dysphagia
- Non-dysphagia related Aspiration Pneumonia
 - Aspiration does not occur because of dysphagia
 - Safely swallowed material
 - Gastroesophageal reflux or emesis (colonized)
 - Deacidified gastric contents

DAP vs. other Pneumonias

1. Location of chest infiltrates
 - DAP: typically gravity dependent segments
 - Lower lobes an segments
 - Position while aspirating
Radiographic evidence

- Infiltrates
 - Chest x-ray shows “shadows” at sites of infection-induced inflammation
 - Advanced pneumonia may involve entire lobes
 - Infection can spread
 - Aspiration Pneumonitis - Does not spread...

Aspiration Related Infiltrates

- Basilar infiltrates
- Upper & middle lobe infiltrates

Aspiration produces pneumonitis or pneumonia in gravity dependent portions of lung(s). "Dependence" depends on posture when aspiration occurs, density & volume aspirated.

DAP vs. other Pneumonias

- 1. Location of chest infiltrates
 - CAP, VAP, Nosocomial Pneumonia:
 - Diffuse
 - VAP: often well distributed
RRUL and RML infiltrates in patient with pneumonia

Aspiration Pneumonia

Aspiration pneumonia
Multilobar community acquired pneumonia

- **DAP vs. other Pneumonias**
 - **2. Signs and symptoms**
 - DAP, CAP, Nosocomial Pneumonia: *similar*,
 - Dyspnea
 - Hypoxemia
 - Malaise
 - Fever
 - Productive cough
 - Purulent sputum
 - Leukocytosis

- **Bacteriology**
 - DAP: oral pathogens/oral flora
 - CAP: Strep. pneumoniae, Klebsiella pneumoniae, H. influenzae, RSV, Legionella, E. coli, Staph. aureus
 - VAP: pseudomonas, proteus species, Staph. Aureus
 - Typically multiple organisms
 - Nosocomial pneumonia: pseudomonas, proteus species, Staph. aureus
 - Leukocytosis (elevated WBC)
 - Normal: 4.5 – 10.5 k cells/microliter
DAP vs. other Pneumonias

4. History
- DAP: Dysphagia! Dysphagia-producing disease, Symptom onset following oral intake; position during oral intake; esophageal dysmotility
 - Dependent for feeding/oral care, oral biofilm

DAP vs. other Pneumonias

4. History
- CAP: pt. not institutionalized; insidious onset
- Nosocomial Pneumonia: institutionalized patient, insidious onset
- VAP: mechanically ventilated patient; typically NPO at onset

Examination data collection

5. Course of Pneumonia
- What you see on assessment is not baseline
 - Elevated respiratory rate
 - Mental status
 - Cough is present in background
 - Count coughing before, during, and after oral trials
Examination data collection

<table>
<thead>
<tr>
<th>Time</th>
<th>Duration</th>
<th>Cough</th>
<th>Throat</th>
<th>Swallow trials A</th>
<th>Swallow trials B</th>
<th>Post-swallow trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5 min</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Summary-pneumonia

- Knowledge of normal and abnormal function is essential
 - Not just swallowing function...
- Elderly possess many risk factors for pneumonia that are unique to the elderly
- There are many clues pointing to, or away from, a diagnosis of DAP

Summary-pneumonia

- Things to remember
 - Aspiration can occur without dysphagia
 - Aspiration is one potential source of pneumonia pathogens
 - All respiratory illnesses are NOT dysphagia related
 - ALL PNEUMONIAS ARE NOT ASPIRATION RELATED
 - Patient appearance with pneumonia is NOT baseline
 - History, course, physical signs are data for the SLP
Respiratory System & Diseases

- The structures involved
- The respiratory conditions seen in the elderly
 - Are they suspicious for a dysphagia etiology?

Aging and Disease

- Obstructive Diseases
 - Inspired air is obstructed from the respiratory membrane
 - Obstructed gas exchange
 - Respiratory pump works
- Restrictive Diseases
 - Airflow or volume is mechanically restricted
 - Gas exchange is intact
 - Patient cannot inhale sufficient volume

Aging and Disease

- Chronic respiratory conditions
 - COPD
 - Progressive airway/alveolar destruction (emphysema)
 - Chronic bronchitis
 - Congestive Heart Failure
 - Hypertension
 - Right heart, left heart
 - Pulmonary Edema, Pleural Effusions
 - Pulmonary Fibrosis
 - Asthma
Aging and Disease

- Acute respiratory conditions
 - Pneumonia
 - Pneumothorax
 - Atelectasis
 - ARDS
 - Other acute pneumonitis

Respiratory Disease-obstructive

- Obstructive diseases
 - Air is "obstructed" from contact with respiratory membrane
 - Reduced oxygen supply
 - Reduced waste elimination
 - Acidosis
 - Increased respiratory rate
 - Overlap with swallow

Respiratory Disease-obstructive

- Airway Obstruction
 - Caused by dysphagia?
 - Very possible
 - Causes dysphagia?
 - No
Respiratory Disease-obstructive

- COPD
 - Chronic bronchitis
 - chronic mucus...obstruction
 - Emphysema
 - Alveoli and capillary destruction,
 - Resistance to blood flow into lungs
 - Can cause heart failure
 - Increased rate
 - Decreased cough effort
 - Reduced mucociliary clearance

Obstructive Pulmonary Disease

Respiratory membrane
surface area is destroyed
- emphysema

Respiratory membrane
surface area is obstructed
- Chronic bronchitis

Respiratory Disease-obstructive

- COPD: Caused by dysphagia?
 - Rarely but possible...
 - Chronic aspiration can produce
 - Alveolar destruction
 - Airway disease
 - Asthmatic bronchitis
 - Chronic irritation due to chronic aspiration
1. “Bottlenecked” Pulmonary Circulation → (R) Ventricle Fails

2. “Bottlenecked” Systemic Circulation → (L) Ventricle Fails

Hypertension and Edema: Normal Fluid “Balancing”
Hydrostatic pressure pushes water into interstitial space around organs.

Interstitial Fluid

Plasma

Na+ Na+

Cells/Organs

Hypertension

Hypertension and Edema: Abnormal Fluid "Balancing"

Obstructive Pulmonary Disease

Pulmonary Edema

- Common in CHF
- Hypertension
- Caustic ingestion
- Increased capillary permeability
- Pneumonitis
- Increased rate / reduced inspiratory capacity

Respiratory Disease-Restrictive

- Restrictive Diseases
- Limit amount of air that can be inhaled
- Mechanical
- Pain, paralysis, fibrosis
- Poor compliance
Restrictive Pulmonary Disease

- Asthma
 - A. Allergic/reactive
 - bronchial smooth muscle spasm
 - narrow airway, increased resistance, reduced flow
 - B. Asthmatic bronchitis
 - Mucus production
 - Obstructive component

Respiratory Disease-Restrictive

- Asthma
 - Dysphagia related? Maybe. Chronic aspiration can cause asthmatic bronchitis
 - Cause of dysphagia? Short-term/acute, maybe

Restrictive Pulmonary Disease

- Mechanically restrictive disease
 - Disable complete expansion of thoracic cavity
 - Kyphosis
 - Abnormally flexed thoracic spine, compressed thorax
 - Pulmonary fibrosis
 - Tough, leathery segments tether adjacent segments
 - Paralysis
Restrictive Pulmonary Disease

- Dysphagia related?
 - Kyphosis, no
 - Pulmonary fibrosis? Maybe
 - Chronic aspiration
 - Effects on respiration/swallow
 - Increased rate / reduced inspiratory capacity

Restrictive Pulmonary Disease

- Pneumothorax
 - Perforation caused by empyema/abscess
 - Chronic aspiration

Restrictive Pulmonary Disease

- Atelectasis
 - Areas of collapsed alveoli
Restrictive Pulmonary Disease

Pleural Effusion

CHF (transudative), Inflammatory (exudative)

Aspiration and Lung Damage

- Idiopathic Pulmonary Fibrosis (IPF)
 - Fibrosis: toughening
 - Idiopathic: from an unknown cause/etiology

Aspiration Pneumonitis

- Acute Lung Injury caused by aspiration of caustic or particulate matter
- Restrictive Plus Obstructive
 - Restrictive
 - Inflammation of alveoli by effects of irritants
 - No infection
 - Pulmonary edema
 - Obstructive
 - Fluid filled alveoli
Aspiration Pneumonitis

- Gastric Contents: Massive Acute Inflammation
 - Sterile, acidic
 - Airways, respiratory membrane damage
 - Opportunistic secondary infection
 - ARDS

ARDS

Iatrogenic causes of respiratory conditions

- Iatrogenic condition: a disease cause by treatment of another disease
 - Sedation (restrictive)
 - CNS depression
 - Disruption of pleural linkage (restrictive)
 - Cardiothoracic surgery
 - Phrenic nerve injury (restrictive)
 - Cardiothoracic surgery
Respiratory Swallow Tactics

- Effects on interventions
 - Mainly on behavioral interventions
 - Timing of airway closure
 - Consider added fatigue of “eating and drinking”
 - Increase respiratory rate even more?
 - Mitigating rate increases with supplemental O2
 - ...because we can’t pull off more CO2.

Summary

- Pulmonary disease affects swallow/breathing coordination
- Pulmonary disease can cause, or be caused by, dysphagia
 - Mainly characterized by disruption of swallow-respiratory coordination

Next – Risk Factors Favoring Pathogenesis of Pneumonia (Besides Dysphagia!)
Risk Factors for Pneumonia

- **Host Risk Factors**
 - Something about the host (patient) predisposing them to an adverse outcome
 - Oral colonization, aging, dependence, underlying pulmonary, neurological or digestive disease

- **Iatrogenic Risk Factors**
 - Increased risk for an adverse event caused by treatment of another condition
 - Medications, intraoperative injury, artificial airway

Dysphagia—a host risk factor

- Little disagreement regarding dysphagia
 - Aspiration obstructs airways
 - Enables secondary infection
 - Stroke, neurological diseases, cause dysphagia

- But pneumonia is always multifactorial...
 - We often CANNOT eliminate dysphagia

- What else can we do to mitigate pneumonia risk?

Non-Dysphagia Risk Factors

- Langmore, et al., 1998
 - 189 institutionalized males (non-ICU)
 - CSE, VFS, 3 scintigraphic exams (GE reflux, esophageal motility)
 - Half also had FEES test
 - VFS repeated if dysphagia suspected
 - Dental exam, salivary flow measurement, saliva and throat cultures, interview (repeated annually)
 - Outcome: pneumonia
 - SBC >12,000 + fever >100.5F + new infiltrate on CXR
Non-Dysphagia Risk Factors

- Patients who developed pneumonia had significantly more:
 - Feeding tubes in place
 - COPD, CHF, GI diagnoses
 - Decayed teeth, periodontitis, did not brush teeth
 - Multiple medical diagnoses, multiple medications
 - Dependent for oral care and feeding
 - Reduced activity
- What is the evidence in these areas?

Feeding Tubes - iatrogenic

- Feeding tubes as pneumonia risk factor
 - Bacterial contamination of stomach and mouth*
 - 44% PEG, 54% NG
 - E. coli, Proteus, multi-organism: NG > PEG (p<.001)
 - Feeding tube reservoirs contaminated**
 - 44% stroke patients with NG develop pneumonia***
 - ...without worsening dysphagia****

Segal, et al., 2006; **Wagner, et al., 1994; ***Dzeiwas et al., 2004; Dzeiwas et al., 2008

Feeding Tubes

- Pneumonia incidence is high *, **, ***, ****
 - Short-term, long-term
 - Other complications
 - Agitation and self extubation*
 - Do not improve risk of death or poor outcome *

*Ciocon, et al., 1988; Dzeiwas et al., 2004; Finucane, et al., 1996; Gomes et al., 2004
Lindeboom, 2005
Pulmonary Disease-host risk

- COPD
 - Alters swallow physiology
 - Inspiration following swallow more frequent*
 - Damaged mucociliary clearance
 - Reduced ability to clear contaminants
 - Impaired cough

*Gross et al., 2009;

Pulmonary Disease

- CHF
 - Increased respiratory rate due to
 - Pleural effusion, pulmonary edema

- COPD and CHF: present significantly more in patients diagnosed with pneumonia *, **

Langmore et al., 1998; Langmore et al., 2002

Pulmonary Disease

- Active smoking
 - 4.1 times higher pneumonia risk *
 - Pharyngeal and glottic protective reflexes are attenuated by active smoking**

Langmore et al., 1998; Dua et al., 2002
Medications - iatrogenic

- Antipsychotics*
 - 60% increase pneumonia risk in a case-control study of elderly patients
 - Risk in first week of treatment: 450% increase
 - Subsides (does not disappear) over time
 - Most events with atypical antipsychotics
 - Clozapine, Abilify, Risperdal
 - Extrapyramidal effects, sedation
 - Typical drugs: sedation (haloperidol, chlorpromazine)

*Knoj et al., 2008;

Medications

- Multiple medications
 - Increase risk of pneumonia 15% *
- Medications that reduce LES tone
 - Cholecystokinin, secretin, progesterone, glucagon, neurotensin, dopamine, atropine, butylscopolamine, theophylline, nitrates, alcohol, fat, chocolate
 - Barbiturate, cigarettes, benzo., Ca channel blockers (cardizem), caffeine, anticholinergics

*Langmore et al., 1998;

Medications

- Acid suppression medications
 - Administered for stress ulcer prophylaxis in ICU
 - 3 studies show increased incidence of pneumonia in patients taking acid suppressing drugs
 - Proton pump inhibitors (omeprazole, etc.)
 - H2 receptor antagonists (ranitidine, etc.)
 - Increased pneumonia risk (discussed earlier)
 - Enables survival of pathogens in stomach
Medications

- LaHeij et al., 2004 (>300,000 OP subjects)
 - Treated patients who developed pneumonia were matched to up to 10 age/gender/lifestyle
 - Currently using PPI: 89% higher pneumonia risk over those who stopped using PPI
 - H2 antagonists: 63% higher pneumonia risk
- Herzig et al., 2009 (>60,000 IP subjects)
 - 52% inpatients treated
 - 5% treated patients, 2% untreated, → pneumonia
 - 30% higher risk of pneumonia (adjusted)

Medications

- Eurich et al., 2010
 - 248 patients post-pneumonia admission, compared to 2500 patients with no pneumonia hx.
 - 5.4 years average follow up
 - Some continued, some stopped PPI use
 - Acid suppression (current/past): 12% incidence
 - Current users: all of the incidence was with current
 - Non-acid suppression: 8% incidence

Medications

- Interesting contrast
 - SDD (selective decontamination of the digestive tract (sterilizes gastric contents without acid suppression)
 - Reduced pneumonia incidence in CVA patients*

Gosney et al., 2006
Medications

- There is evidence that acid suppression therapy may increase pneumonia risk
 - ...and that the stomach is a reservoir for pathogens

- Mechanism: alteration of gastric pH
 (normally 2-3) allows bacterial survival and colonization

Colonization-host risk or iatrogenic

- Gastric colonization
 - Discussed previously

- Oral colonization
 - Systematic review
 - Good evidence that aggressive oral care/hygiene reduces pneumonia in high risk adults
 - Relative risk reduction=34%-83%
 - Causes: oral, dental disease, xerostomia, medications

Colonization

- Oral Colonization (cont’d)
 - Worsened with*:
 - Antibiotic use
 - Oral disease
 - Xerostomia
 - Malnutrition
 - Presence of teeth! **

*Gomes et al., 2003; **Wan et al., 2003
Colonization

- Oral colonization (cont’d)
 - Up to 1/3 of stroke patients cultured, found to have:
 - aerobic* (pseudomonas, e.g.)
 - and anaerobic** (E. coli, e.g.)
 - ...pathogens in mouth
 - Combine oral colonization with the fact that all normals aspirate at times ***

G.E. Reflux

- Regurgitation of gastric contents → aspiration
 - If colonized → pneumonia
 - If not colonized → ? Pulmonary fibrosis*
 - 24 hour pH probe
 - Compared IPF to ILD patients
 - Significant incidence of pH <4 in top, bottom of esophagus in IPF, not in ILD

*Tobin et al., 1998

Aging

- Senescent sensorimotor changes
- Reduced physiologic reserve

Baseline →
Healthy
Not Healthy
Young Middle Aged Old Very Old

Non Well-Being Physiologic Reserve

Stroke
Aging

- Diminished esophageal motility
- Reduced cricopharyngeal compliance
- Reduced intrabolus pressure generation (swallowing)
- Immune system degradation

Other iatrogenic risk factors

- Postoperative sensorimotor impairments
 - Predispose to dysphagia
 - Anterior cervical fusion*
 - Esophagectomy**
 - Thyroidectomy, carotid endarterectomy
 - Aortic repairs
 - Phrenic, vagus n.

*Krislovich, et al., 2000; **Atkins, et al., 2007

Other iatrogenic risk factors

- Airway manipulation
 - Mechanical ventilation
 - Endotracheal intubation
 - Tracheostomy
 - All raise the patient's pneumonia risk (VAP)
Mechanical Ventilation

- Complications of PPV
 - Barotrauma (alveolar damage, excessive pressure)
 - Pneumothorax
 - Diffuse alveolar damage
 - Atelectasis (alveolar collapse, insufficient PA)
 - Infection
 - ETT, tracheostomy: direct pathogen route
 - Nosocomial pathogens \(\rightarrow\) VAP
 - Respiratory deconditioning
 - Alveolar hypo-hyperventilation
 - Hypotension

Endotracheal Intubation

- Complications
 - malfunction, mucus plug, leak, position
 - Self extubation
 - Mucosal necrosis
 - Pneumonia
 - Laryngeal edema
 - Tracheal erosion

Prolonged Intubation

- Definition
 - Generally, \(>24-48\) hours
 - Dependent on other host risk factors
 - Age, method of intubation, underlying disease
 - \(>24\) hours (frail elderly)
Prolonged Intubation

- Evidence
 - Ajemian et al., 2001
 - 48 patients > 48 hours intubation, < 48 hours extubated
 - 27/48 (56%) aspirated, 12/27 (44%) silent aspiration
 - 19/27 thin liquid aspirators, 9/27 puree

- ElSohl et al., 2003
 - 42 elderly, 42 nonelderly; all > 48 hours intubation
 - FEES at 2 days post-extubation, and 5, 9, 14 days (aspirators)
 - 22/42 elderly, 15/42 non-elderly, aspiration
 - 13% elderly persistent dysphagia after 2 weeks
 - 0% non-elderly

Tracheostomy

- Open pathway for pathogens to colonize lung
Respiratory System Testing and Treatments

Testing the Respiratory System

Pulmonary Function Parameters

- FVC = forced vital capacity
- VC = vital capacity
- FEV₁ = forced expiratory volume in 1 second
- TLC = total lung capacity
- Reduced in restrictive disease
- RV = residual volume

Aspiration Pneumonia and the SLP
James L. Coyle, Ph.D., CCC-SLP, BRS-S
Normal Resting Spirometry

Spirometry Subtests

- Post-bronchodilator FEV₁
- FEV₁/FVC
- Rate of decline
- Body plethysmography
- Exhaled CO (carbon monoxide)
 - Confirms current smoking status

Imaging of the Chest

- Chest x-ray
- Chest CT
Chest x-ray

- Shadows
 - X-rays penetrate air filled areas and strike film
 - X-rays are absorbed by denser tissue
 - Differences in grayscale color indicate areas of "more solid" matter
 - Cases a shadow on the film

Right lung

Left lung
Chest x-ray: AP & lateral

Chest x-ray reports

- Terms
 - Consolidation, density, opacity:
 - "I see a shadow."
 - Does not indicate nature of "more solid" matter
 - Infiltrates:
 - More solid matter has infiltrated a space
 - Alveolar, airway
 - Edema: Fluid saturating area
 - Alveolar, interstitial
 - Effusion: fluid fills a body cavity (pleural)

Chest x-ray reports

- Terms
 - Atelectasis: collapsed alveoli
 - Obstructive
 - Blocked airways; gas within alveoli absorbed into blood
 - Non-obstructive
 - Compressive
 - Alveoli pressed closed – extrinsic
 - Dependent
 - Pt. position prevents inflation of alveoli; poor inspiration
 - Adhesive: lack of surfactant cause collapse
 - Passive: widened pleural space enables collapse
Chest x-ray reports

- Terms
 - Pulmonary vascular congestion
 - NOT airway congestion
 - Blood back-up in pulmonary vessels
 - Poor perfusion, (R) heart failure
 - pulmonary artery congestion
 - Arterial hypertenion, (L) heart failure
 - pulmonary vein congestion
 - Alveolar infiltrates are inside alveoli!
 - The rest of these are NOT alveolar infiltrates.

Pneumothorax

ARDS (bilaterally) with (R) Pneumothorax
Pulmonary edema (before, after)

Left lung mass; patchy (R) infiltrates

ARDS – Massive pneumonitis

Aspiration Pneumonia and the SLP
James L. Coyle, Ph.D., CCC-SLP, BRS-S
Pleural Effusions (R>L)

Chest CT

- Slices of body part are looked at

Plane film would look like this

Aspiration Pneumonia and the SLP
James L. Coyle, Ph.D., CCC-SLP, BRS-S
Chest CT

COPD

Reduced parenchyma

Emphysematous “holes”

Loss of alveolar surface area

Other tests

- Exercise tolerance
 - Treadmill test, 6 minute
- Resting SpO₂
 - After 10 minutes rest
- Biomarkers
 - Sputum, exhaled gas condensate, metabolites
 - DNA; Markers for surfactant, etc.
- Questionnaires
 - Depression, QOL, fatigue, dyspnea

Other tests

- Body Plethysmography: TLC and RV
- Inhalation Challenge Tests: allergen
- Exercise stress test
- Gas diffusion
 - ABG →
Blood Gases

• Reading Blood Gas Data (ABG)
 - p = partial pressure (mm/Hg)
 - a = arterial
 - v = venous (blood gases from venous sample)
 - O₂ = oxygen, CO₂ = carbon dioxide
 - S = saturation
 - H = hydrogen ion
 - Index of acidity

Blood Gases

• Arterial blood gases & normal ranges
 - paCO₂ = partial pressure of CO₂
 - 38-45 mmHg
 - paO₂ = partial pressure of O₂
 - 85-100 mmHg
 - pH: acidity
 - ~7.4
 - SaO₂ = % hemoglobin O₂ saturation
 - 90-100%

Pulmonary Disease Treatment

• ...and adapting the SLP evaluation to accommodate them...
Treatment of Respiratory Conditions

- Bronchodilators
 - Nebulizer
 - Metered Dose Inhaler (MDI)

Pulmonary Disease Treatment

- Oxygen monitoring
 - ABG
 - Pulse oximetry
 - Continuous
 - Intermittent

Pulmonary Disease Treatment

- Hyperinflation therapy
 - Patient generated
 - Incentive spirometry (IS)
 - Positive pressure
 - "Mechanical bronchodilator"
 - CPAP
 - One level
 - Bipap-2 level
 - IPPB
Pulmonary Disease Treatment

- Bronchopulmonary Hygiene
 - Percussion and postural drainage

- Suctioning

- Supplemental oxygen
 - Nasal cannula
 - Facemask
 - Non-rebreather
 - Prevents inspiration of
 - Room air
 - Exhaled air
 - Delivery parameter = LPM flow

- Adaptations?
 - Facemask: can pt. use cannula/oximeter?

- Venturi mask
 - Mixes room air with O2 to a fixed FiO2
 - Delivery parameter = FiO2, not flow (LPM)
Pulmonary Disease Treatment

- Observe all important vital signs
 - Respiratory rate in context of...
 - Oxygen saturation
 - Pulse oximetry does not help with dysphagia assessment; identifies hypoxemia over longer periods
 - Endurance/fatigue
 - Speaking, feeding, etc.
 - Overall mental status
 - Can the rate be brought down, temporarily?
 - i.e. the duration of a "meal"

Examination considerations

- Medication timing and the evaluation
 - Assess patient functions r/t recent medications
 - Bronchodilators, sedating medications, anxiolytics
 - Timing of "breathing treatments"
- Duration of endurance
 - Can influence meal duration/frequency
 - Patient who is "safe" for short periods
- Mix and match
 - The above parameters can be flexibly manipulated

Tracheostomy Management

- Acute Illness Requiring Mechanical Ventilation
 - Patient Survives Acute Illness/Disease
 - Patient Fails to Wean from Mechanical Ventilation
 - Tracheostomy is Placed
 - Patient Successfully Weans from Mechanical Ventilation
 - Patient is Decannulated
- Tolerance of Cuff Deflation
 - Screening for Aspiration of Oropharyngeal Secretions
 - Establishment of Oral-Nasal Airflow
 - Tolerance of Expiratory Occlusion; Speech
 - Clinical/Instrumental Evaluation of Swallowing
 - Tolerance of Inspiratory and Expiratory Occlusion

Heffner & Zamora, 1991; Holevar et al., 2008
High End Life Support

- ECMO
 - Extracorporeal membrane oxygenation

Extracorporeal Life Support

After Mechanical Ventilation

- Weaning
- Prolonged endotracheal intubation
- Ventilator associated pneumonia
- Clinical evaluation of tracheostomy patients
- Instrumental Testing

Dysphagia Interventions
Interventions

- Designed to
 - Prevent adverse events
 - Biomechanical
 - Aspiration, bolus misdirection, etc.
 - Global health outcomes
 - Pneumonia, malnutrition, dehydration
 - Psychosocial impairments
 - Isolation etc.

Interventions

- Topics
 - Thickening of liquids for dysphagia management
 - "Free water" protocols
 - Enteral feeding tubes in dysphagic patients

- Common theme:
 - Hydration/nutrition vs. aspiration...
 - Choosing the better of 2 or more bad choices

Water

- Main fluid medium of all cells (except fat)
 - 75-80% cell volume = water
 - Necessary for normal cellular functions
 - Other chemicals dissolved, suspended
 - Concentrations at cell membrane
Water

- Intake of water: ~2300 mL per day
 - 2100 mL through intake
 - 200 mL synthesized by body (CHO metabolism)

- Variations in water intake
 - Climate, habits, physical activity

Water

- Loss of water: ~2300 mL per day
 - Evaporation: 700 mL per day
 - Respiratory system (300 mL), through skin (400 mL)
 - Not sweating
 - Urine: 1400 mL
 - Sweat: 100 mL
 - Feces: 100 mL
Dehydration
- Kidneys constantly excrete fluid
 - Elimination of excess solutes
 - Ingested or metabolic byproducts
 - + Evaporation
 - = dehydration
- Sodium concentration rises
 - Hypernatremia with loss of extracellular fluid

Dehydration
- Hypernatremia
 - ADH increases fluid conservation by kidneys
 - Threshold for drinking
 - AKA Thirst!
 - Heart, kidney, neuron, other organs do not function
 - Cellular activity depends on concentration of sodium and other ions in plasma, cells.

Thick liquids
Pneumonia and aspiration

- Thin liquids aspirated most frequently
 - Compared to other viscosities
 - Spawned experimentation with thick liquids

Thickened liquids

- Theory for dysphagia use:
 - Slowing the flow
 - Compensates for mistimed airway closure
- What do we know about them?

Thickened liquids

- Use in SNF's
 - 11 companies that own 20% of all SNF's in US
 - Randomly selected facilities to avoid bias
 - 252 facilities in 41 states (~29000 beds)
 - Analyzed by CMS region

Castellanos et al., 2004)
• Results by facilities
 • Use in SNF: 0% to 100%
 • Facilities that use thickened water: 91.6%

• Results by patients
 • 8.3% patients receive thick liquids
 • Nectar (60%), Honey (33%), Pudding (6%)
 • Assessed with instrumentation: 45% (0-100%)

Thickened liquids

• Reduces aspiration of thin liquids
 • Kuhlemeier et al., 2001; Logemann et al., 2008
 • Does not increase pharyngeal residue
 • Bogaardt, et al., 2007.
 • Swallow apnea later/longer with thick liquids
 • Hiss et al., 2004; Butler et al., 2004
 • More effort needed to clear thick
 • Nicosia et al., 2001

Thickened liquids

• Patients do not like thick liquids
 • Garcia, 2005: prepackaged vs. mixed
 • Prepackaged better: Whelan, 2001
 • Great variability in thick liquids
 • Prepackaged & mixed: UW/VA Swallowing Research Lab, 1999
 • Prepackaged: Garcia, et al., 2005; Steele, 2005
 • Mixed by clinician: Glassburn & Deem, 1998
Thickened liquids

- And...
 - Mixed vs. packaged thick liquids
 - Not same viscosity
- And...
 - Barium mixtures vs. packaged thick drinks:
 - Not same viscosity
- Other properties make up “thickness”
 - ...not just viscosity

Thickened liquids

Add liquid to cylinder
 Remove cylinder
 Spread distance over time (50 mm)

Line Spread Test vs.
Brookfield Viscometer

Dysphagia Treatment Methods

LST: Similar Viscosity

Fluids

<table>
<thead>
<tr>
<th>Material</th>
<th>Viscosity</th>
<th>Line Spread -50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-thickened honey 1</td>
<td>675</td>
<td>9</td>
</tr>
<tr>
<td>Pre-thickened honey 2</td>
<td>832</td>
<td>8.75</td>
</tr>
<tr>
<td>Pre-thickened honey 3</td>
<td>909</td>
<td>10.42</td>
</tr>
<tr>
<td>Pre-thickened honey 4</td>
<td>1117</td>
<td>9.33</td>
</tr>
<tr>
<td>Honey thick barium</td>
<td>710</td>
<td>18.75</td>
</tr>
<tr>
<td>Karo syrup (93%)</td>
<td>1038</td>
<td>13.6</td>
</tr>
<tr>
<td>Pre-thickened nectar 1</td>
<td>260</td>
<td>12.8</td>
</tr>
<tr>
<td>Pre-thickened nectar 2</td>
<td>300</td>
<td>13</td>
</tr>
<tr>
<td>Pre-thickened nectar 3</td>
<td>264</td>
<td>11.7</td>
</tr>
<tr>
<td>Nectar thick barium</td>
<td>200</td>
<td>17.2</td>
</tr>
</tbody>
</table>

UW/VA Swallowing Research Lab, 1999
Thickened liquids

- Among 25 experienced SLP’s
 - Nectar: $r=+0.02$, Honey: $r=-0.03$
- Within subject (1st vs. second mixing of each consistency)
 - Nectar: $r=+0.26$ to $+0.33$
 - Honey: $r=+0.67$

Thickened liquids

- Hydration and thick liquids
 - Sharpe et al., 2007
 - Assessed water absorption
 - >95% water absorbed from thick mixtures
 - No difference between water, thick water
Thickened liquids

- Hydration and thick liquids
 - Reduced fluid intake when thick prescribed
 - Whelan, 2001
 - 24 stroke patients
 - Mean fluid intake = 455 mL/day

- Finestone, et al., 2001
 - 2 groups:
 - 1-enteral → diets with thick liquids (21 days)
 - 2-diets with thick liquids (21 days)
 - Both groups inadequate fluid intake with thick liquids
 - Reduced fluid intake as weaned from tube

- Large study data
 - Logemann et al., 2008; Robbins et al., 2008
 - 711 Patients with Parkinson disease, dementia
 - Aspiration on qualifying VFSS
 - Randomized order of presentation
 - Chin-down/thin, Nectar, Honey
 - Results...
Thickened liquids

- Part 1: eliminating liquid aspiration
 - Honey → nectar → chin down posture (all groups)
 - Overall aspiration: 53%, 63%, 68%
 - Half of patients aspirated on all 3
 - More aspiration on later trials
 - Patient preference:
 - Chin down posture, nectar, honey
- Part 2 →

Thickened liquids

- Protocol 201 Part 2 (515 patients)
 - Patients with aspiration on none or all:
 - ½ chin down posture with thin liquids (259)
 - ½ thick liquids (256)
 - ½ nectar, ½ honey (233, 123)
 - 3 month follow up
 - Pneumonia, hydration, other outcomes
- Results: →

Thickened liquids

- Results – Protocol 201 Part 2
 - 52/515 patients developed pneumonia (11%)
 - Much less than expected
 - Other adverse outcomes
 - More dehydration in thick liquids patients
 - 6% vs. 2%
 - More UTI in thick liquid patients
 - 6% vs. 3%
Thickened liquids

- Median hospital LOS with pneumonia
 - Honey (18 d.), nectar (4 d.), CDP (6 d.)

Thickened liquids

- Summary on thickened liquids
 - Reduces aspiration but is not preferred
 - Thick liquids do not dehydrate
 - Reduced intake of fluids
 - Probable source of dehydration
 - Test results do not match diet thickness
 - Anticipated results cannot be expected

Thickened liquids

- Summary on thickened liquids
 - Compliance
 - Patient preferences
 - Patient satisfaction
 - Aspiration of thick liquids may produce a worse pulmonary consequences than thin liquids
 - If treatment plan will not be implemented...
Evidence Summary for using Free Water Protocols

“Free Water” Protocols

- Frazier Rehab Institute Water Protocol
 - Kathy Panther, M.S., CCC, Louisville, Kentucky
 - “… Concern over patient and family non-compliance with thin liquid restrictions both within the facility and after discharge led us to alter our protocol in 1984. …oral intake of water became a major feature in both treatment and day to day hydration. Features of Frazier’s program …”

Free Water Protocols

- Literature search
 1. “Free Water”, + Deglutition Disorders
 2. Panther, K.
 - One citation on semantic relations in JSHD 1983
 - Perspectives article in 03/05 describing protocol
 - “Currently there is no published evidence that will give dysphagia clinicians a definitive scientific basis for the safe delivery of water to patients with dysphagia”
 - ASHA journal (pre “Leader”) piece in 1998
“Free Water” Protocol Principles

- Developers discuss
 - Safety of Water
 - Hydration
 - Compliance

1. “Safety of Water”
 - “Small amounts of water ... are quickly absorbed into the body pool.”
 - Large amounts are not.
 - “Water has a neutral pH...is free of bacteria ...”
 - “Aspiration of other liquids can lead to respiratory infections and pneumonia.”
- Cited evidence: animal studies, drowning case studies

Pneumonia and aspiration

- Drowning
 - Water fills air spaces
- Plasma is hypertonic
 - Meaning: it contains lower concentration of water
- At membrane, water flows into capillary

Effros, et al., 2000
Pneumonia and aspiration

- Example: seawater contains
 - High NaCL concentration
 - Is hypertonic
 - Compared to plasma
 - Seawater drowning
 - Plasma enters lung
 - Similar with aspiration of any hypertonic solution.

“Free Water” Protocol Principles

1. **“Safety of Water”**
 - “Water provides a safe means of assessing patients”
 - Opinion
 - “All patients (of any diagnosis) referred to Speech Pathology are screened for dysphagia with water.”
 - OK
 - “Water is safely utilized in daily treatment
 - “Swallow compensations can be practiced with thin liquid.”

2. **“Hydration”**
 - “Free water consumption is encouraged for all patients and makes a significant contribution in hydration for many.”
 - Evidence?
 - “The risk and cost of IV fluids should be decreased.
 - “Post-discharge surveys... indicate water often is the primary means of hydration.”

Retrieved on 01/20/09 from http://www.speech-languagepathologist.org/archives/chat/SLP/April212003.html
“Free Water” Protocol Principles

- 3. “Compliance”
 - "Patients reported thickened liquids did not quench thirst.
 - "...patient complaints are now much less"
 - "...patients object to thickened liquids.
 - "...patients appear more likely to comply with the thin liquids restriction.”

Retrieved on/using from:

“Free Water” Protocol Principles

- 3. “Compliance”
 - "...preparation of thickened liquids (is) burdensome.
 - "family may tire of patient complaints and abandon thickened liquids.
 - "Availability and cost of thickening may preclude compliance.
 - "Thick liquid preparation, ... can overwhelm many families.”

Free Water Protocols Evidence

- Bronchoalveolar lavage
- Whelan et al. (2001) reduced fluid intake in patients prescribed thick liquids
- Numerous citations on dehydration in dysphagia
- Animal studies of water aspiration
Free Water Protocols Evidence

- Garon et al., 1997
 - 20 aspiration-documented CVA patients
 - Aspirated liquid only on VFSS
 - Randomized to
 - (C): Thick liquids only at all times (10)
 - (E): All liquids thickened, AND free water (10)
 - Duration: treatment + 30 day follow up
- Small and underpowered study
 - Yet the main evidence for protocol

Garon et al., 1997

- Exclusion
 - “Severe cough” when aspirating
 - Cannot rinse and expectorate
 - Cannot self-feed
 - Pre-existing hydration concern
- 148 patients screened: 13% enrolled
 - 34 patients declined participation
 - 94 patients ineligible

Garon et al., 1997

- Water placed out of reach
- No water with meal or within 1 hour
- No compensatory swallow therapy
- Outcome variables
 - Pneumonia, hydration, time to no aspiration
 - Fluid intake
• Garon et al., 1997
 • Results
 • No patient in either group developed pneumonia, dehydration, complications
 • Intake of fluids comparable between groups
 • 1210 mL (C) - all thick
 • 1318 mL (E): 855mL thick, 463mL thin

Free Water Protocols Evidence

• Garon et al., 1997
 • Time to recovery of aspiration
 • Experimental: 19.1 days (range 7-35 days)
 • Control: 27.2 days (range: 8-64 days)
 • Control: 42% longer to recover
 - More severe aspirators in control so OK
 - Small sample
 • Time to pneumonia outcome: adequate?

Free Water Protocols Evidence

• Garon et al., 1997
 • “Much less water than expected” by investigators (“we were surprised...”)
 • Satisfaction: only one control patient was satisfied with thick liquid
 • “all study patients satisfied with water”
Free Water Protocols Evidence

 - Pneumonia-no difference
 - Thin liquids/chin-down posture: 10%
 - Thick liquids: 11%
 - Nectar: 8%, Honey: 15%
 - Dehydration: Thin: 2%, Thick: 6%
 - UTI: Thin: 3%, Thick: 6%
 - 3 times longer hospital stay in honey-thick who developed pneumonia

Free Water Protocols

- Two recent studies
 - Two presented at ASHA 2008
 - Becker et al., 2008. An oral water protocol in rehabilitation patients with dysphagia for liquids.

Free Water Protocols (#1)

- Bronson-Lowe, et al., 2008
 - 1. Retrospective study comparing patients with historical controls (via chart review)
 - Pneumonia, dehydration: no difference
 - Fluid intake greater in treatment group (p=.03)
 - 2. Sample of convenience concurrent comparison
 - Fewer pneumonia and more fluid intake
Authors’ discussion

- Authors could not determine whether results were influenced by:
 - Increased oral hygiene in the treatment group
 - Increased oral hydration in the treatment group
 - More compliance with aspiration precautions in treated patients
 - Hydration not affected by treatment/control assignment
- This needs to be replicated prospectively

Bronson-Lowe, et al., 2008

Free Water Protocols (#2)

- Randomization to water protocol or prescribed dietary fluid (26 patients)
- 17 patients requiring feeding assistance
 - 8 assigned to control, 9 to treatment
- 9 independent feeding patients
 - 3 assigned to control, 6 to treatment
- All received oral care four times per day

Becker, et al., 2008

Free Water Protocols (#2)

- Dependent Variables
 - Adverse events (pneumonia, UTI, death)
 - Objective measures not assigned by clinician/judges
 - FIM, FCM scores
 - not blinded, assigned by treating clinician/judges
 - Length of stay

Becker, et al., 2008
Free Water Protocols (#2)

- Results
 - Pneumonia: 1 patient in each group
 - UTI: 2 patients in each group
 - Death: 2 treatment deaths, no control deaths
 - FIM: no significant difference
 - FCM: no significant difference
 - Length of stay: 29.1 days (control) vs. 15.8 (tx)
 - Diet influence length of stay?

 Becker, et al., 2008

- Other findings:
 - Independent patients consumed significantly less fluid than dependent patients (p<.01), regardless of group

Free Water Protocols (#2)

![Box plot of average daily fluid intake by strata and treatment](256x256.png)

Becker, et al., 2008
Free Water Protocols (#2)

- **Discussion**
 - The presence of two deaths in the treatment group cannot be ignored
 - ...and may underscore the importance of clinical judgment in applying this and other treatments
 - Both patients that died had chronic pulmonary conditions

Becker, et al., 2008

Other issue – implied endorsement

“Free water protocols”

- **Summary**
 - 25 years experience by developers
 - No published, peer reviewed data
 - anecdote only
 - Minimal objective evidence
 - No pneumonia difference
 - Other differences seem to exist
“Free water protocols”

- Summary
 - Physiologic justification exists
 - But not for all patients
 - Severe pulmonary disease
 - One size does not fit all
 - Developers obligation to publish data

- Opinion here: there is no one protocol that is appropriate for every patient

Feeding tubes

- Indications
 - Artificial nutrition
 - Gastric decompression
 - Digestive system incompetence
 - Paralysis, obstruction, absorption disease
 - “Transfer dysphagia”
 - Oropharyngeal transfer disorder
 - Delivery:
 - Directly to gut → blood (enteral)
 - Directly to blood (parenteral)
Non-Oral Nutrition

- Enteral nutrition
 - Delivered to the gut
 - Utilizes digestive system
- Tube name \(\rightarrow\) entry, delivery
 - Naso-gastric (NG); gasatrojejunostomy (GJ)
- Depth: sphincters, absorption

Non-Oral Nutrition

- Parenteral nutrition
 - Bypasses the digestive system-intravenous
 - Central, peripheral
 - Percutaneous Intravenous Central Catheter
 - proteins, fats, carbohydrates, etc.
 - Peripheral vein – few nutrients can be delivered
 - TPN, PPN

Non-Oral Nutrition

- Nasopharyngeal entry
 - Fluoroscopic
 - Blind
Non-Oral Nutrition

- Surgical entry
 - Fluoroscopically guided
 - Endoscopically guided
 - PEG
 - Open surgical
- All involve opening abdominal wall so all are surgical

Non-Oral Nutrition

- PEG
Enteral Tube Indications

- Intractable aspiration
- Failed interventions
- Recurrent illness attributed to prandial aspiration
- Permanent → temporary
- Replacement/substitute for oral intake
- Supplement to oral intake
- Replacement for types of materials aspirated

Contraindications

- Ileus/Gastroparesis, SBO
 - Paralysis, obstruction
- Absorption Deficits
 - Default to parenteral nutrition
- Prior abdominal resections/anatomy diff.
 - Surgically inserted abdominal enteral tubes
- GER, severe.

Feeding Tubes

- Aspiration
 - Is not mitigated (25-40% in PEG)
 - Saliva production
 - May increase – new site (Metheny et al., 2006)
Complications

Feeding Tubes Evidence

Enteral Tube Feeding

- N= 70 tube fed patients, age 65-95, over 11 mo.
 - Indications
 - refusal to swallow 50%
 - dysphagia without obstruction 47%
 - esophageal obstruction 3%
 - Nutrition: weight, hgb, hct, serum albumin
 Ciocon et al, (1988)
Enteral Tube Feeding

• NGT complications in first two weeks
 • self-extubation (67%), AP (43%)
• GT complications in first two weeks
 • pneumonia (56%), dysfunction 50%
 • self-extubation 44%
• Late NGT complications
 • pneumonia (44%), self-extubation (39%)
• Late GT complications
 • pneumonia (56%), dysfunction 38%
 • self-extubation 0%
 • 40% died

Ciocon et al. (1988)

Enteral Tube Feeding

• Mortality in tube fed patients is high
 • Because they have multiple conditions
 • Dementia: 25-50% mortality
 • 14 dementia patients die in hospital following PEG placement (McClave & Chang, 2003)
 • Callahan et al., 2000 (150 PEG cases)
 • 7-14 days 16%
 • 30 day 22%, 1 year 50%

The SLP and the Feeding Tube

• 1. Patient education most important
 • Empower patient to ask questions
 • Neutral pro's and con's
• 2. Clinician personal opinion irrelevant
• 3. Clinician understanding of all the “ins and outs”
 • Our patients are sick
 • Balance of risks = medical care

Aspiration Pneumonia and the SLP
James L. Coyle, Ph.D., CCC-SLP, BRS-S
Thank you.

And now for some cases...
Coyle, Pneumonia Seminar

References

References

Griffiths, J., Barber, V. S., Morgan, L., & Young, J. D. (2005). Systematic review and meta-analysis of studies of the timing of tracheostomy in adult patients undergoing artificial ventilation, from http://www.bmj.com/cgi/content/abstract/bmj.38467.485671.E0v1
doi:10.1136/bmj.38467.485671.E0 (published 18 May 2005)

References

Coyle, Pneumonia Seminar

References

References

References

Copyright 2010

No part of this material may be reproduced or utilized in any form or by any means electronic or mechanical including photocopying, recording, or by any information storage or retrieval systems without the prior permission of the copyright owner.

© 2010 NSS-NRS, Inc.